1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
| #include <bits/stdc++.h> using namespace std; typedef long long LL; #define FOR(i, x, y) for (decay<decltype(y)>::type i = (x), _##i = (y); i < _##i; ++i) #define FORD(i, x, y) for (decay<decltype(x)>::type i = (x), _##i = (y); i > _##i; --i) #ifdef zerol #define dbg(args...) do { cout << "\033[32;1m" << #args<< " -> "; err(args); } while (0) #else #define dbg(...) #endif void err() { cout << "\033[39;0m" << endl; } template<typename T, typename... Args> void err(T a, Args... args) { cout << a << ' '; err(args...); } // ----------------------------------------------------------------------------- const LL MOD = 1E9 + 7;
struct Mat { static const LL M = 2; LL v[M][M]; Mat() { memset(v, 0, sizeof v); } void eye() { FOR (i, 0, M) v[i][i] = 1; } LL* operator [] (LL x) { return v[x]; } const LL* const operator [] (LL x) const { return v[x]; } Mat operator * (const Mat& B) { const Mat& A = *this; Mat ret; FOR (i, 0, M) FOR (j, 0, M) FOR (k, 0, M) ret[i][j] = (ret[i][j] + A[i][k] * B[k][j]) % MOD; return ret; } Mat pow(LL n) const { Mat A = *this, ret; ret.eye(); for (; n; n >>= 1, A = A * A) if (n & 1) ret = ret * A; return ret; } Mat operator + (const Mat& B) { const Mat& A = *this; Mat ret; FOR (i, 0, M) FOR (j, 0, M) ret[i][j] = (A[i][j] + B[i][j]) % MOD; return ret; } void prt() const { FOR (i, 0, M) FOR (j, 0, M) printf("%lld%c", (*this)[i][j], j == M - 1 ? '\n' : ' '); } };
const LL p_max = 1E6 + 100; LL prime[p_max], p_sz; void get_prime() { static bool vis[p_max]; FOR (i, 2, p_max) { if (!vis[i]) prime[p_sz++] = i; FOR (j, 0, p_sz) { if (prime[j] * i >= p_max) break; vis[prime[j] * i] = 1; if (i % prime[j] == 0) break; } } }
LL mul(LL u,LL v, LL p) { return (u * v - LL((long double) u * v / p) * p + p) % p; }
LL pown(LL x, LL n, LL MOD) { LL ret = MOD != 1; x %= MOD; while (n) { if (n & 1) ret = mul(ret, x, MOD); x = mul(x, x, MOD); n >>= 1; } return ret; }
bool checkQ(LL a, LL n) { if (n == 2 || a >= n) return 1; if (n == 1 || !(n & 1)) return 0; LL d = n - 1; while (!(d & 1)) d >>= 1; LL t = pown(a, d, n); // 快速乘 while (d != n - 1 && t != 1 && t != n - 1) { t = mul(t, t, n); d <<= 1; } return t == n - 1 || d & 1; }
bool primeQ(LL n) { static vector<LL> t = {2, 325, 9375, 28178, 450775, 9780504, 1795265022}; if (n <= 1) return false; for (LL k: t) if (!checkQ(k, n)) return false; return true; }
LL T, k, n; int main() { LL exp[100], sz; get_prime(); cin >> T; while (T--) { cin >> k >> n; sz = 0; FOR (i, 0, p_sz) if (n % prime[i] == 0) { LL c = 0, p = prime[i]; while (n % p == 0) { n /= p; ++c; } exp[sz++] = c; } if (n > 1) { if (primeQ(n)) exp[sz++] = 1; else { LL t = sqrt(n + 0.5); if (t * t == n) exp[sz++] = 2; else exp[sz++] = exp[sz++] = 1; } } LL ans = 1; FOR (i, 0, sz) { Mat x; x[0][0] = x[1][0] = 1; x[0][1] = exp[i]; x = x.pow(k); LL t = x[1][0] * (exp[i] + 1) + x[1][1]; ans = t % MOD * ans % MOD; } cout << ans << endl; } }
|