| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 
 | #include <bits/stdc++.h>using namespace std;
 typedef long long LL;
 #define FOR(i, x, y) for (decay<decltype(y)>::type i = (x), _##i = (y); i < _##i; ++i)
 #define FORD(i, x, y) for (decay<decltype(x)>::type i = (x), _##i = (y); i > _##i; --i)
 #ifdef zerol
 #define dbg(args...) do { cout << "\033[32;1m" << #args<< " -> "; err(args); } while (0)
 #else
 #define dbg(...)
 #endif
 void err() { cout << "\033[39;0m" << endl; }
 template<typename T, typename... Args>
 void err(T a, Args... args) { cout << a << ' '; err(args...); }
 
 const LL MOD = 1E9 + 7;
 
 struct Mat {
 static const LL M = 2;
 LL v[M][M];
 Mat() { memset(v, 0, sizeof v); }
 void eye() { FOR (i, 0, M) v[i][i] = 1; }
 LL* operator [] (LL x) { return v[x]; }
 const LL* const operator [] (LL x) const { return v[x]; }
 Mat operator * (const Mat& B) {
 const Mat& A = *this;
 Mat ret;
 FOR (i, 0, M)
 FOR (j, 0, M)
 FOR (k, 0, M)
 ret[i][j] = (ret[i][j] + A[i][k] * B[k][j]) % MOD;
 return ret;
 }
 Mat pow(LL n) const {
 Mat A = *this, ret; ret.eye();
 for (; n; n >>= 1, A = A * A)
 if (n & 1) ret = ret * A;
 return ret;
 }
 Mat operator + (const Mat& B) {
 const Mat& A = *this;
 Mat ret;
 FOR (i, 0, M)
 FOR (j, 0, M)
 ret[i][j] = (A[i][j] + B[i][j]) % MOD;
 return ret;
 }
 void prt() const {
 FOR (i, 0, M)
 FOR (j, 0, M)
 printf("%lld%c", (*this)[i][j], j == M - 1 ? '\n' : ' ');
 }
 };
 
 const LL p_max = 1E6 + 100;
 LL prime[p_max], p_sz;
 void get_prime() {
 static bool vis[p_max];
 FOR (i, 2, p_max) {
 if (!vis[i]) prime[p_sz++] = i;
 FOR (j, 0, p_sz) {
 if (prime[j] * i >= p_max) break;
 vis[prime[j] * i] = 1;
 if (i % prime[j] == 0) break;
 }
 }
 }
 
 LL mul(LL u,LL v, LL p) {
 return (u * v - LL((long double) u * v / p) * p + p) % p;
 }
 
 LL pown(LL x, LL n, LL MOD) {
 LL ret = MOD != 1; x %= MOD;
 while (n) {
 if (n & 1) ret = mul(ret, x, MOD);
 x = mul(x, x, MOD);
 n >>= 1;
 }
 return ret;
 }
 
 bool checkQ(LL a, LL n) {
 if (n == 2 || a >= n) return 1;
 if (n == 1 || !(n & 1)) return 0;
 LL d = n - 1;
 while (!(d & 1)) d >>= 1;
 LL t = pown(a, d, n);
 while (d != n - 1 && t != 1 && t != n - 1) {
 t = mul(t, t, n);
 d <<= 1;
 }
 return t == n - 1 || d & 1;
 }
 
 bool primeQ(LL n) {
 static vector<LL> t = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
 if (n <= 1) return false;
 for (LL k: t) if (!checkQ(k, n)) return false;
 return true;
 }
 
 LL T, k, n;
 int main() {
 LL exp[100], sz;
 get_prime();
 cin >> T;
 while (T--) {
 cin >> k >> n;
 sz = 0;
 FOR (i, 0, p_sz)
 if (n % prime[i] == 0) {
 LL c = 0, p = prime[i];
 while (n % p == 0) {
 n /= p;
 ++c;
 }
 exp[sz++] = c;
 }
 if (n > 1) {
 if (primeQ(n)) exp[sz++] = 1;
 else {
 LL t = sqrt(n + 0.5);
 if (t * t == n) exp[sz++] = 2;
 else exp[sz++] = exp[sz++] = 1;
 }
 }
 LL ans = 1;
 FOR (i, 0, sz) {
 Mat x; x[0][0] = x[1][0] = 1; x[0][1] = exp[i];
 x = x.pow(k);
 LL t = x[1][0] * (exp[i] + 1) + x[1][1];
 ans = t % MOD * ans % MOD;
 }
 cout << ans << endl;
 }
 }
 
 |